Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
iScience ; 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1695175

RESUMEN

Clotting Factor V (FV) is primarily synthesised in the liver and when cleaved by thrombin forms pro-coagulant Factor Va (FVa). Using whole blood RNAseq and scRNAseq of peripheral blood mononuclear cells we find that FV mRNA is expressed in leukocytes, and identify neutrophils, monocytes and T regulatory cells as sources of increased FV in hospitalised patients with COVID-19. Proteomic analysis confirms increased FV in circulating neutrophils in severe COVID-19, and immunofluorescence microscopy identifies FV in lung-infiltrating leukocytes in COVID-19 lung disease. Increased leukocyte FV expression in severe disease correlates with T cell lymphopenia. Both plasma-derived and a cleavage resistant recombinant FV, but not thrombin cleaved FVa, suppress T cell proliferation in vitro. Anticoagulants that reduce FV conversion to FVa, including heparin, may have the unintended consequence of suppressing the adaptive immune system. Graphical

2.
iScience ; 25(3): 103971, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1699877

RESUMEN

Clotting Factor V (FV) is primarily synthesized in the liver and when cleaved by thrombin forms pro-coagulant Factor Va (FVa). Using whole blood RNAseq and scRNAseq of peripheral blood mononuclear cells, we find that FV mRNA is expressed in leukocytes, and identify neutrophils, monocytes, and T regulatory cells as sources of increased FV in hospitalized patients with COVID-19. Proteomic analysis confirms increased FV in circulating neutrophils in severe COVID-19, and immunofluorescence microscopy identifies FV in lung-infiltrating leukocytes in COVID-19 lung disease. Increased leukocyte FV expression in severe disease correlates with T-cell lymphopenia. Both plasma-derived and a cleavage resistant recombinant FV, but not thrombin cleaved FVa, suppress T-cell proliferation in vitro. Anticoagulants that reduce FV conversion to FVa, including heparin, may have the unintended consequence of suppressing the adaptive immune system.

3.
Am J Pathol ; 192(1): 112-120, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1506166

RESUMEN

Severe coronavirus disease 2019 (COVID-19) increases the risk of myocardial injury that contributes to mortality. This study used multiparameter immunofluorescence to extensively examine heart autopsy tissue of 7 patients who died of COVID-19 compared to 12 control specimens, with or without cardiovascular disease. Consistent with prior reports, no evidence of viral infection or lymphocytic infiltration indicative of myocarditis was found. However, frequent and extensive thrombosis was observed in large and small vessels in the hearts of the COVID-19 cohort, findings that were infrequent in controls. The endothelial lining of thrombosed vessels typically lacked evidence of cytokine-mediated endothelial activation, assessed as nuclear expression of transcription factors p65 (RelA), pSTAT1, or pSTAT3, or evidence of inflammatory activation assessed by expression of intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), tissue factor, or von Willebrand factor (VWF). Intimal EC lining was also generally preserved with little evidence of cell death or desquamation. In contrast, there were frequent markers of neutrophil activation within myocardial thrombi in patients with COVID-19, including neutrophil-platelet aggregates, neutrophil-rich clusters within macrothrombi, and evidence of neutrophil extracellular trap (NET) formation. These findings point to alterations in circulating neutrophils rather than in the endothelium as contributors to the increased thrombotic diathesis in the hearts of COVID-19 patients.


Asunto(s)
COVID-19 , Vasos Coronarios , Miocarditis , Miocardio , SARS-CoV-2/metabolismo , Trombosis , Anciano , Anciano de 80 o más Años , Plaquetas/metabolismo , Plaquetas/patología , COVID-19/metabolismo , COVID-19/patología , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Miocarditis/metabolismo , Miocarditis/patología , Miocardio/metabolismo , Miocardio/patología , Activación Neutrófila , Neutrófilos/metabolismo , Neutrófilos/patología , Agregación Plaquetaria , Trombosis/metabolismo , Trombosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA